
Abstract. Starting with the Levinthal paradox, a brief
introduction to the protein folding problem is presented.
The existing theories of protein folding, including the
folding funnel scenario, are discussed. After briefly dis-
cussing different simulation studies of model proteins,
we discuss our recent work on the dynamics of folding of
the model HP-36 (the chicken villin headpiece) protein
by using a simplified hydropathy scale. Special attention
has been paid to the statics and dynamics of contact
formation among the hydrophobic residues. The results
obtained from this simple model appear to be surpris-
ingly similar to several features observed in the folding
of real proteins. The account concludes with a discussion
of future problems.
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1 Protein folding problem

Proteins are essential for life. The first functionally
important action of a protein is to fold correctly into
its unique native state. Proteins must fold correctly into
their native state in order to perform their predeter-
mined biological activity. Misfolded proteins not only
fail to function but they can also cause diseases. For
example, misfolded forms of the prion protein (PrP) are
the infectious particles that cause a group of diseases
known as spongiform encephalopathies [1]. To be
specific, the conformational conversion of the PrP
from its normal soluble helical conformation to an
insoluble b-sheet state (misfolded state) causes the
prion disease and infectivity [1]. b-Amyloid protein
deposits, called plaques, are found in the brains of
people with Alzheimer’s disease. The reason for the
formation of these deposits is an area of active research

[2]. It has been suggested very recently that misfolded
protein monomers coalesce into full-blown aggregates
which are toxic [3].

Protein folding is obviously a very complicated time-
dependent process involving large-scale changes in the
conformation and the volume [4] of the heteropolymer.
The objective of this account is to articulate our recent
work and understanding of some aspects of this complex
problem through the study of minimalistic models. Such
models have been used extensively by many groups and
have proven to be useful in generating and testing broad
ideas.

Clearly, a satisfactory understanding of the protein
folding problem requires the solution of a large number
of associated problems, many of which are of interest
in their own right. Nevertheless, the ultimate goal is
to predict the three-dimensional structure of the native
state, correct to atomic resolution, once the primary
sequence is given. Many different approaches have been
adopted, from statistical analysis of existing analogous
structures to the use of genetic algorithms, to predict the
tertiary structure. The focus of the present review is on
the theoretical, primarily statistical mechanical and
computational, approach to the problem.

Although the details of the process of protein
folding are not yet fully understood, significant pro-
gress has been made in recent years (a number of ex-
cellent reviews are available [5–9]). Most of the earlier
studies were based on the widely accepted belief that
the folded proteins exist in the global minimum free-
energy state. This is known as the Anfinsen hypothesis.
Many years ago, Anfinsen [10] predicted that small
globular proteins can fold in the absence of any cat-
alytic biomolecules. Small proteins typically fold rap-
idly and reliably to a unique native state from any one
of the vast number of initial unfolded conformations.
The rapidity of folding, the complexity of protein
structure, and the fact that each molecule in its
extended state can take a microscopically different
path to the finally folded state make protein folding
a very difficult problem for both experimental and
theoretical approaches [11–15].
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1.1 Levinthal’s paradox

If the native state of the protein is indeed the most stable,
meaning the lowest free-energy state, then the question
naturally arises: How does the protein get there? This
question is of vital importance in the understanding of the
protein folding problem and it was first elegantly coined
by Levinthal in the following fashion: ‘‘How long does it
take for an extended, unfolded protein to reach its final,
folded native state, through a random search of its
configurations?’’. In order to find an obvious (but
misleading!) answer to this question, let us consider a
protein with 101 amino acids. For simplicity, we restrict
the analysis to the case in which each bond can have only
three states (conformations). Even in this simple case,
there exist 3100 possible states for the protein. Among
these, since the native state is unique, only one state
corresponds to the native state. Thus, in order to find the
correct native state, Levinthal assumed that the protein
has to randomly search each of these configurations. Even
at the rate of 1013 new configurations per second, it
requires 1027 years (a cosmologically long time) to reach
the native state. Nevertheless, in reality, proteins fold into
their stable native state within seconds or less. This
observation is the celebrated Levinthal paradox [16].

The previous example reveals that random searches
are not an effective way for the proteins to find the
correctly folded native state. More importantly, Levin-
thal’s paradox suggests that the protein explores no
more than a tiny fraction of the total number of states
and may even adopt a kinetically accessible, metastable
configurations that may not have the lowest free energy!
Thus, the final functionally active state of a folded
protein may be realized through kinetic or thermody-
namic control. However, the final state must be suffi-
ciently stable to survive long enough to perform
biological functions.

1.2 The blind watchmaker

Dawkins [17], the well-known British neo-Darwinianist,
considered another paradox: How long does it take for a
monkey to type the following line from Hamlet’s remark,
‘‘Me think it is like a weasel’’? This sentence contains 28
characters (including five spaces). Since there are 26 letters
and a space, to reach the correct statement by random
typing, the monkey has to try out 2728 key strokes. This is
again a very big number! On the other hand, if we do not
allow the monkey to change those letters that are already
correctly typed in place, even by random typing, Hamlet’s
remark can be reached in only a few thousand key strokes!
Thus, this paradox can be resolved by replacing a random
search by a biased, ‘‘enlightened’’ search!

1.3 Resolving Levinthal’s paradox

Both the examples already mentioned reveal that to
reach a final well-defined state (folded state in protein
folding, Hamlet’s remark in The blind watchmaker)
random searches are not effective ways. In particular, the

latter example suggests that the biased searches are more
effective than completely random searches. Then, natu-
rally one raises the following questions: ‘‘Is there any
bias in protein folding to resolve the Levinthal para-
dox?’’; ‘‘How much bias is required in order to get a
biologically meaningful time scale?’’. In a simple but
revealing study of this problem, Zwanzig, Szabo and
Bagchi (ZSB) [18] presented a simple model where they
considered an initial configuration of a protein with
N þ 1 amino acids, having S ‘‘incorrect contacts’’. They
gave an expression to calculate the folding time, s, as

sðSÞ � 1

Nk0

� �
1þ k0

k1

� �N

; ð1Þ

where k0 and k1 represent the rate at which a ‘‘correct
contact’’ can become an ‘‘incorrect contact’’ and an
‘‘incorrect contact’’ can become a ‘‘correct contact’’,
respectively. When k0 ¼ k1, we get the time required by a
fully random search and this grows as 2N and indeed is
very large for N > 100. However, for a biased search
k1 > k0, and the ratio k0=k1 is small, which gives rise to a
drastic reduction in the time required to find the native
state from a randomly chosen extended state. For a fully
biased search (k0 ¼ 0), Eq. (1) takes the following form:

sðSÞ ¼ 1

k1

� �XS
j¼1

1

j
: ð2Þ

By this approach, ZSB demonstrated that a reasonable
energy bias (of the order of a few kBT ) against locally
unfavorable configurations reduces Levinthal’s time to a
biologically significant size, like a second or so, for the
time required to fold the protein.

This analysis provides an example of competition be-
tween the entropy and the energy – the entropic cost is
reduced by the energetic gain during the folding. The gain
in energy (which translates into lowering of free energy)
acts as the driving force. This suggests that the free-energy
surface for folding essentially resembles a multidimen-
sional funnel [19–24] where one has a large entropy (many
configurations) at higher energy at the top of the funnel
while much fewer states with lower energy in the lower
part of the funnel. The protein sits at the bottom of the
funnel. The examples just discussed provide a direct link
to the funnel-like picture. While the random searches
amount to spending a lot of time in the nearly flat surface,
characterized by lots of small minima, in a region which is
away from the folding pathway (in the rugged landscape),
the biased searches amount to traveling down a smooth
funnel. Indeed, by considering the ‘‘correctness’’ of the
configuration (in the ZSB model), Zwanzig [25] later
showed that one can obtain a funnel-like landscape where
the final native state is separated from the disordered state
by an entropic barrier.Adetailed descriptionof the energy
landscape picture is given in later sections.

2 Protein folding theories

The ultimate goal of any theoretical approach of protein
folding is to predict the tertiary structure from any given
sequence of amino acids. This lofty goal, of course,
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includes the prediction of the secondary structures as
well. Progress towards achieving this goal has been slow.
Early statistical mechanical theories of protein folding
considered single-domain small proteins [26, 27] because
of their simplicity. Attempts are now currently being
made to understand the secondary structure formation.

2.1 The statistical field theory of heteropolymer collapse

Bryngelson and Wolynes (BW) proposed a theory by
‘‘statistically’’ extending the generalized Flory theory
[28]. This theory consists of two parts, namely hetero-
polymer collapse and an ordering of the residues into the
native state.

According to this theory, the free energy of a
Gaussian heteropolymer consisting of monomers of the
same size with radius r and end-to-end distance R,
confined in a volume V can be expressed as a function of
its linear size (R) and temperature, T , as

F ðT ;RÞ ¼ �NT log V � 3T log
R
R0

� �
þ 3

2
T

R
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� �2

þ 1

2
T � z �kk þ Dj2

2T

� �� �
N2r3

R3

þ 1

6
T
N 3r6
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; ð3Þ

where R2
0 ¼ Nl2 (l ¼ 2r) and ��jj is the average energy of

interaction. The minimization criterion for the free
energy leads to
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where Th denotes the h temperature.
This approach can be extended to protein folding by

assuming an intrinsic energetic preference of the mono-
mers for the native conformation. If the interaction en-
ergies are defined for the primary structure as ��, for the
secondary structure as �J and for the tertiary structure
as �j, for the residues involved in the interaction in their
native state, this theory provides a simple two-parameter
model for protein folding. These two parameters are g,
the generalized packing fraction, and q, the fraction of
amino acid residues in the native state. The free energy
can be written in terms of T and gðqÞ as

F ðT ;qÞ¼N
�
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The model of BW predicts a first-order phase transition
from the extended to the ordered state [29]. The free-
energy surface shows two minima, which correspond to
the extended and the native state. The two minima are
separated by a barrier. The model could thus capture the
cooperative nature of the transition. Another interesting
point is that starting from the disordered state, there are
several alternative pathways to the native minimum.

2.2 The statistical thermodynamic theory
of thermal stabilities of globular proteins

In spite of the previously mentioned implications, BW
theory is not sufficiently sophisticated to predict the
tertiary structure for a given sequence of amino acids – it
is a simple two-parameter theory meant to catch the
essence of the folding process.

A theory similar in spirit to BW was proposed by Dill
et al. [27]. This theory is also a two-parameter theory,
with the packing density and the fraction of hydropho-
bic residues in the core as the two parameters. The free-
energy barrier to the folding was calculated by
constructing a thermodynamic pathway consisting of the
following two steps.

1. Random collapse of the unfolded chain without any
structuring so that the hydrophobic and hydrophilic
residues are randomly distributed throughout a
condensed globular structure.

2. Formation of a compactly folded form by the
subsequent reconfiguration leading to an arrange-
ment of hydrophilic residues in the surface which
surrounds a core of hydrophobic residues.

Thus, according to this theory, the driving force for
the protein folding is the force originating from the
hydrophobic interactions. As a result, the net change in
free energy can be written as

DF1 ¼ DFhU1 þ DFconf1 ðfor step 1Þ;
DF2 ¼ DFhU2 þ DFconf2 ðfor step 2Þ ;

ð6Þ

where Ui denotes the fraction of hydrophobic residues in
the sequence. Thus, the total change in free energy of
folding is

DF ¼ DF1 þ DF2 ð7Þ
and on the basis of protein models (to be described later)
the free-energy functions appearing in the previous
expressions can be derived. This theory also predicts a
first-order phase transition between the folded and the
extended states of the polymer.

Thus, the theories of BW and Dill et al. could capture
some of the essence of the protein folding problem.
These initial theories were followed by a series of studies
which vastly improved our understanding of protein
folding [16, 18, 20, 21, 25, 30–36]. Recently Portman and
coworkers [37, 38] presented a more detailed micro-
scopic theory of protein folding rates. By studying the
effect of chain stiffness on the fine structure of the free-
energy profile, they found that increasing the persistence
length of the chain tends to smooth the free-energy
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profile. By neglecting the non-native contacts and trap-
ping effects, they could obtain the reaction coordinates
and folding rate prefactors for specific proteins with
known native structures.

3 Energy landscape picture

From the numerical and analytical studies of various
models Wolynes, Onuchic and others [19, 20, 39–42]
introduced and elaborated the concept of an energy
landscape for protein folding. In particular, following
the general consideration of protein folding, Leopold
et al. [19] introduced the concept of a ‘‘protein folding
funnel’’, a kinetic mechanism to understand the self-
organizing principles of the protein sequence–structure
relationship. Crudely speaking, a folding funnel is a
collection of geometrically similar collapsed structures,
one of which is in the global minimum. As pointed out
by Dill [5], the hydrophobic collapse is probably the
initial step in the protein folding; however, secondary
structures, like helices and hair-pin bends, may occur
simultaneously. Thus, folding can occur simultaneously
along different coordinates. According to this latter
development, the folding kinetics is determined by an
energy landscape and for foldable proteins this resem-
bles a funnel with a free-energy gradient towards the
native structure. The introduction of the concept of a
folding funnel provided a much needed breakthrough in
the understanding of the pathways of protein folding.

The funnel-like energy landscape picture emphasizes
the importance of a global overview of the protein’s
energy surface in understanding the folding process. This
viewpoint will be of great help if folding occurs through
organizing an ensemble of structures rather than
through only a few uniquely defined sequentially
arranged structural intermediates. In such a case, a
statistical description of the energy landscape can, in
principle, be used to describe the protein folding. Such a
description can be built by using polymers, as explained
later.

4 Driving forces in protein folding

In order to understand the protein folding problem, it is
essential to study the forces that drive the protein
folding. Many years ago Kauzmann [43] studied the
hydrophobic interactions in a great detail. He concluded
that the hydrophobic interactions are one of the major
driving forces in protein folding. Later studies supported
his ideas [44]. There are several experimental facts to
support this view:

1. A protein is less affected by mutation of protein
surfaces than hydrophobic cores [45].

2. Hydrophobic interactions are the strong interactions
among amino acids in water [46].

3. Hydrophobic interactions are the crucial structure-
determining forces [47, 48].

According to this view, folding cooperatively and closely
resembles the collapse of a polymer in a poor solvent.

Other forces, such as hydrophilic forces, are weaker but
they can affect the stability [5]; however, the role of
hydrophilic forces in protein folding is still not com-
pletely known.

Guided by the hydrophobic interactions, a minimal
model of globular protein behavior can be constructed
from a side-chain-centric perspective (solvation forces
are dominant) rather than from a backbone centric are
(nearest-neighbor amino acid interactions dominant).
This leads to the possibility of designing polymers that
can fold and perform protein-like functions, even with-
out a peptide backbone. Thus, to a first approximation,
a polymer can be modelled by a binary sequence of
hydrophobic/polar monomers [49].

The minimal model can serve as a guide to obtain
general features. At the same time, it is important to
note that the minimal models cannot provide the balance
of forces in real proteins. It should also be noted that in
reality, since the stability of a protein is a small differ-
ence of large interactions, all the interactions contribute
to the structure, thermodynamics and kinetics.

On the basis of these ideas a variety of models and
real protein simulation studies have been carried out. In
the following a few important classes of protein simu-
lations are described in brief.

5 Protein simulation methods

5.1 Lattice models

Early simulation studies attempted to understand the
protein folding by simulating the lattice models which
are the simplest possible (and certainly rather crude)
models to study the complex protein folding problem
[50]. Later the use of lattice-based approaches were
extended to predict the protein tertiary structure [6, 51–
53]. Generally, in this model amino acid residues
constituting the protein are represented by two types
of beads (hydrophobic and hydrophilic). Each bead
occupies one lattice site. The movement of beads on the
lattice is governed by certain rules [46]. In this method,
the approach to the native state is driven by the energy
due to the favorable hydrophobic contacts between the
appropriate residues. Thus, the folding pathway is
essentially guided by a single order parameter, qn, the
fraction of the native topological contacts present in any
given configuration. A statistically better and smooth
folding path can be obtained by incorporating the
Go-like potential [54].

The lattice models are protein-like in the sense that
they fold to a unique native structure from an astro-
nomically large number of possible initial conformations
and do so rapidly, reproducibly and reversibly. The
advantages of these models are twofold. First, the ther-
modynamic driving force for folding is an explicit part of
the model, so the origin of the stabilizing forces can be
separated from the problem of folding mechanism.
Second, it is straightforward to study a large collection
of folding events by direct simulation, with complete
access to the structural details of every conformation
that the polymer samples.
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5.2 Off-lattice simulations

Although the lattice models are protein-like, they often
omit features that are critical for understanding protein
function. As a result, extracting useful information
of the folding process from the abundance of detail
provided by these numerical experiments remains a
challenge.

Subsequent development found success in the study
of model proteins. For example, off-lattice Langevin
dynamic simulation studies [22, 55, 56] proved more
promising in studying the dynamics of protein folding.
In this method, protein is represented by a necklace of
beads of different kinds. The solvent molecules sur-
rounding the protein are implicitly represented through
the solvent-averaged frictional force. This model allows
the protein conformation to be mimicked through the
application of geometrical constraints both on the rela-
tive separation and the orientation. Recent studies of
this class demonstrated the folding of a model protein
into a b-barrel structure [55]. A stochastic kinetic model
for titin unfolding has been presented and studied by
kinetic Monte Carlo off-lattice simulations [57]. These
studies suggested the existence of several metastable
minima in which the folded forms of the protein have
similar structural characteristics but different energies.

5.3 All-atom simulations

While the lattice and off-lattice simulations consider
model proteins where the amino acids are replaced by
spheres of certain hydrophobicity, all-atom simulations
explicitly study the interaction between all the atoms
present in a real protein [58–62]. For example, an all-atom
Monte Carlo simulation of a small peptide demonstrated
many characteristic features of the folding process and
supported the energy landscape and the funnel concept
[60]. Notable among the all-atom simulations is the study
of Kollman and Duan [58], who carried out the first ever
1-ls simulation of a protein in aqueous solution. They
studied the thermostable chicken villin headpiece subdo-
main, a 36-residue protein (commonly known as HP-36
protein) in aqueous solution by explicit representation of
water molecules. They found a nativelike structure with
two pathways. Recently, this method was successfully
applied to study both the thermodynamics and kinetics of
the folding of a small peptide [60, 61].

6 Polymer collapse: relation to protein folding

It is a dream for experimental biologists to watch the
protein folding through various conformational changes
to reach the final native state. This is, however, still a
difficult task owing to the biologically fast folding time
of proteins. On the other hand, simulation studies
provide a qualitative folding picture by modeling
complex proteins as simple polymer chains. In the
following, an attempt is made to understand the
complex protein folding problem through the study of
polymer collapse.

Recent simulation studies showed that the collapse of
a homopolymer chain qualitatively resembles protein
folding [63]. The variation in the radius of gyration of the
polymer chain and the total energy are shownas a function
of reduced time inFig. 1. This figure shows that during the
collapse, the size of the polymer decreases continuously
without facing barriers. In other words, the collapse of a
homopolymer is a continuous process. This model ho-
mopolymer is used to reproduce the experimentally ob-
served bimodality [64, 65] in the energy-transfer efficiency
between the donor–acceptor pair embedded at suitable
locations along the backbone, during the folding [66].

7 Folding and unfolding of a single-domain model protein

As mentioned earlier, the folding of an extended,
unfolded protein to its unique three-dimensional folded
native state has attracted a great deal of interest [16, 67,
68]. Recent theoretical studies have suggested that the
size, stability and topology of a protein influence the
folding rate and mechanisms [26, 68, 69, 70]. This brings
relevance to the funnel picture [21].

In order to obtain an energy landscape one needs to
study the folding of individual members of the ensemble
of proteins, for a long time. Given the complexity of
protein folding and the amount of computational time it
requires, this is a difficult task to achieve by conven-
tional simulation techniques such as molecular dynam-
ics/Monte Carlo or all-atom simulation [58] or even by
Langevin dynamic simulations [55]. Lattice models are,
of course, easier to study, but they are not appropriate in
this case since each protein ultimately reaches the global
minimum. These difficulties can be avoided by using the
Brownian dynamics (BD) simulation technique. The BD

Fig. 1. Variation in the mean square radius of gyration and the
energy (inset) during the folding of a model homopolymer obtained
from Brownian dynamics (BD) simulations as a function of reduced
time (adopted from Ref. [63])
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simulation has the advantage that it does not include the
detailed description as all-atom simulations, thereby
reproducing the qualitative features by the implicit rep-
resentation. In the following, we report the construction
of an energy landscape of a model HP-36 protein.

8 Model of HP-36

Motivated by the success of the single homopolymer
models [63, 66], a simple model of the chicken villin
headpiece (HP-36) protein is proposed and studied in
detail by off-lattice the BD simulation method [71, 72]. A
representative stable structure of this protein (obtained
from the Protein Data Bank) is shown in Fig. 2. This
particular protein is the smallest monomeric polypeptide
characterized, consisting of only naturally occurring
amino acids that autonomously fold into a unique and
thermostable structure without disulfide bonds or ligand
binding [73]. A simulation study of model protein
folding was carried out by using the hydropathy scale
of amino acids. The diverse interactions among the
amino acid residues are categorized into three classes by
introducing a simplified hydrophobic scale. The simula-
tions incorporate all the six different inter- and intra-
amino acid interactions.

HP-36 protein is modelled as a necklace of different
kinds of beads. Each bead in the sequence represents the
corresponding amino acid in the protein sequence. There
are 36 beads in the chain, since the number of residues
in the original protein sequence (MLSDEDFKAV
FGMTRSAFAN LPLWKQQNLK KEKGLF) is 36.

All the beads are assumed to be of same mass and size.
The beads in HP-36 interact via a site–site Lennard-
Jones potential. Neighboring beads are connected via
harmonic springs. The total potential energy of the chain
is given by [71]

U ¼ Ub þ ULJ þ Us ; ð8Þ
where Ub represents the bonding potential,

Ub ¼
XN
i¼2

jðj ri � ri�1 jÞ2 ; ð9Þ

where j represents the bond strength. The interaction
between nonbonded beads is represented by the Len-
nard-Jones-like potential,

ULJðrÞ ¼ �i;j
r
r

� 	12
� r

r

� 	6� �
; ð10Þ

where r is the Lennard-Jones collision diameter and
�i;j represents the interaction strength. N is the number
of beads in the chain, ri is the position of bead i and
rij ¼j ri � rj j. The stiffness is introduced through the
bending potential Us,

Us ¼ Sðcos h � 1Þ2 : ð11Þ
The unit of time, s, is b2=D0, where the single bead
diffusion coefficient is denoted by D0. �

� ¼ �=kBT , where
kBT is the thermal energy. The length is scaled by l, the
bead diameter.

As discussed earlier, one of the major driving forces
of protein folding in aqueous media is the hydrophobic/
hydrophilic nature of amino acids. This can be best
represented by the hydropathy scale [44, 74, 75]. This
scale arranges the standard free energies of transfer from
aqueous solutions to pure liquid hydrocarbons and
provides a measure of hydrophobicity. In a certain sense,
hydropathy scale provides a quantitative measure of the
liking of a particular amino acid for water. Depending
on the hydropathy values, all the amino acids present in
the HP-36 sequence are categorized into three classes
[71]: hydrophobic, weakly hydrophilic and strongly hy-
drophilic. The classification of the amino acids is pre-
sented in Table 1. The classification is done according to
the following criterion. If the hydropathy value is posi-
tive, the amino acid is hydrophobic. On the other hand,
among the hydrophilic amino acids (negative hydro-
pathy value) if the hydropathy value is smaller than
�2:5, it is strongly hydrophilic, otherwise it is weakly
hydrophilic. A schematic representation of the hydro-
phobic scale is presented in Fig. 3a. A pictorial repre-
sentation of the color code of the hydropathy values of
both the original sequence and the simplified sequence
due to the present categorization is shown in Fig. 3b.

Fig. 2. One of the stable structures of thermostable chicken villin
headpiece subdomain, a 36-residue (HP-36) protein (PDB code:
1VII)

Table 1. Classification of the amino acids constituting the HP-36
protein, according to the hydropathy values

Amino acid Category

AFLMPV Hydrophobic
GSTW Weakly hydrophilic
DEKNQR Strongly hydrophilic
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Note that the transfer of the hydropathy scale to the
intermolecular potential is to be understood as a ‘‘sol-
vent-averaged potential’’. This can also be considered as
a potential of mean force, well known in colloids. Also,
such a transfer of hydrophobicity to an interatomic
potential was perhaps first done by Dill [46] in lattice
simulations. The interaction strength parameter values
for the six different interactions are listed in Table 2 . As
can be seen from Table 2, interaction between two
strongly hydrophilic groups is least favored because
water will shield them, while that between two hydro-
phobic groups is strongly attractive. Thus, these poten-
tials are all water-averaged potential.

8.1 Folding study

For each trajectory, an initial configuration is selected
from the Monte Carlo generated equilibrium configura-
tions at �� ¼ 0:1. The temperature of the initial

configuration is then instantaneously reduced by 0.1�,
after 2:5� 105 BD steps. Five such quenches, each with
a gap of 2:5� 105 step, are incorporated to facilitate the
folding. Further simulations for 2:5� 106 BD steps are
carried out (subsequent to the quenching) to obtain the
final configuration. Such a procedure is repeated for the
model proteins with 1000 different configurations.

At each time step, the time-dependent total energy, the
root-mean-square end-to-end distance, R2, and the radius
of gyration, Rg, were all monitored to follow the progress
of the folding transition. The results presented here are the
average over 600 trajectories with different initial config-
urations. More details on the simulation scheme can be
found in a similar study on homopolymers [63, 66].

8.2 Unfolding study

It is well known that a protein can be denatured or
unfolded from its native state by adding salts (e.g.
guanadenium chloride) or chemical agents (e.g. urea).
This is sometimes called cold denaturation. It is believed
that these agents modify the interactions of water at the
protein–water interface. Recent computer simulation
studies [76] seem to suggest that the role of urea is to
provide an energetically favorable environment of the
hydrophobic groups in water. This provides the required
driving force for unfolding. In the context of the present
hydropathy scale, an aqueous solution containing urea
makes the hydrophobic groups less attractive to each
other. Therefore, to motivate the unfolding of the folded
protein, the interaction among the different residues
(polymer beads) is changed to reflect the altered scenario
in the presence of urea in solution. This gives rise to a
nice unfolding of the folded state, whose dynamics are
described later. The modified interaction parameters for
this case are listed in Table 3.

9 Folding features of HP-36

Typical snapshots of model HP-36 folding are shown in
Fig. 4 as observed in BD simulations. The central
picture corresponds to the initial configuration, while
the four other structures represent configurations with
different energies. In the initial configuration the hydro-
phobic and hydrophilic groups are at arbitrary locations
(as in the unfolded HP-36); however, the final configu-
rations show that the model protein folds into a compact
minimum-energy structure by forming a hydrophobic

Fig. 3a, b. Schematic representation of modeling of the HP-36
protein (shown in Fig. 2) by using the hydropathy values. a
Schematic representation of the hydropathy scale. The hydrophilic
nature decreases from blue to red. b Pictorial representation of the
color code of the hydropathy values of both the original sequence
and the simplified sequence used in the present study (adopted from
Ref. [71])

Table 2. Interaction parameter, �i;j, value for the six different
interactions in the folding of model HP-36 protein

Nature of the interaction �i;j

Hydrophobic–hydrophobic 2:0�
Weakly hydrophilic–weakly hydrophilic 0:3�
Strongly hydrophilic–strongly hydrophilic 0:3�
Hydrophobic–weakly hydrophilic 1:0�
Hydrophobic–strongly hydrophilic 0:8�
Strongly hydrophilic–weakly hydrophilic 0:3�

Table 3. �i;j value for the six different interactions in the unfolding
of model HP-36 protein

Nature of the interaction �i;j

Hydrophobic–hydrophobic 0:3�
Weakly hydrophilic–weakly hydrophilic 1:0�
Strongly hydrophilic–strongly hydrophilic 1:0�
Hydrophobic–weakly hydrophilic 0:8�
Hydrophobic–strongly hydrophilic 0:8�
Strongly hydrophilic–weakly hydrophilic 1:0�
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core within the hydrophilic outer surface. These look
surprisingly close to the schematic figures given by Dill
[5] representing the folding of a model protein (Fig. 7 of
Ref. [5]). As emphasized by Dill [5], the main difference
between the collapse of a protein and a homopolymer is
that while the former is accompanied by an increase in
chain compactness, the later involves an additional
reconfiguration of the hydrophobic and polar residues to
reach a compact native state. It is important to note that
Dill’s own simulations were based on lattice models.
Hence, this picture was not possible to reproduce so
vividly. From Fig. 4 it is evident that the simplified
model used in our study represents the complex folding
aspect, at least qualitatively.

9.1 Characterization of nativelike state

A folding/collapse study of 600 extended configurations
has been carried out. Among these, only six (i.e. 1%) of
the configurations are found to have attained a native-
like conformation. The native-like configurations are
characterized by the energy criterion and the number
of specific hydrophobic contact pairs formed. The

minimum-energy criterion employed is to consider those
configurations which have an energy below a certain
low-energy cutoff (�65�) – the lowest-energy state (with
20 hydrophobic contacts) has an energy of �72�. This
cutoff itself is determined by the lowest-energy state
obtained in our simulations. Thus, the five other states
selected as nativelike states are those close in energy to
the lowest-energy configuration. The second criterion is
based on the number of hydrophobic contacts – the
lowest-energy native state is also found to have the larg-
est number (20) of hydrophobic contacts. The nativelike
states are chosen to have at least 15 contacts.

The stability of the native configuration is verified by
carrying out further simulations of the native state for
the 5� 106 steps. The energy is shown as a function of
the reduced time in Fig. 5a, while that of the radius of
gyration is shown in Fig. 5b. This figure reveals the
stability of the nativelike conformation obtained in the
presented study.

9.2 Construction of the funnel

In a simulation study, the energy landscape can be
obtained by distributing the energies corresponding to

Fig. 4. Snapshots of a few conformations of model HP-36 as
observed in BD simulations. The configuration in the center
corresponds to the initial configuration, while the rest of the
configurations represent the different minimum-energy configura-
tions. Note the formation of a hydrophobic core within the
hydrophilic outer surface in all the final configurations. (adopted
from Ref. [71])

Fig. 5. Fluctuations in a the energy and b the radius of gyration of
the native state as a function of reduced time. This figure
demonstrates the stability of the native configuration obtained
from BD simulations

15



the various final states obtained in simulations. The
evolution of a funnel-like energy landscape, as observed
in a simulation study, is shown in Fig. 6. The configu-
rations shown in the figure correspond to the native
state, misfolded, unfolded and metastable states (de-
scribed in the figure). Most of the folded configurations
are found to have the hydrophobic core (red) surround-
ed by the hydrophilic outer surface (blue). This figure
demonstrates the ability of a minimalist model (HP-36)
to obtain the qualitative features of protein folding. The
funnel-like picture appearing in Fig. 6 is actually a three-
dimensional plot (or histogram) – the number of
hydrophobic contacts is shown on the figure. In this
figure the minima are characterized by the larger number
of hydrophobic contacts than the maxima which are
characterized by the smaller number of hydrophobic
contacts. As already mentioned, the funnel is rugged,
which is reflected in the time evolution of the radius of
gyration and the energy of the polymer subsequent to
the quenching (described later).

9.3 Pair contacts

9.3.1 Equilibrium distribution of contacts

Subsequent to the temperature quenching, a fully
extended initial configuration gradually folds into a

compact rigid structure by forming the native contacts.
The probability distribution that a specific (i; j) pair
contact is separated by a distance R is defined as [77]

Gi;jðRÞ ¼ dðR� RijÞ

 �

; ð12Þ
where Rij is the distance between the hydrophobic
residues i and j in the final collapsed state. In Eq. (12),
averaging is defined by

xh i ¼ 1

N

XN
n¼1

xn ; ð13Þ

where N is the total number of configurations which
include the subsets of either nativelike configurations or
configurations that are far from the native state or all the
configurations.

The equilibrium pair time correlations, GijðRÞ, for
various pairs of hydrophobic residues are plotted in
Fig. 7. Figure 7b shows the enlarged version of the first
peak of the pair correlation functions shown in Fig. 7a.
The distribution of the contacts with respect to bead 1
(i ¼ 1) is plotted. The notation of pair correlations be-
tween the various residues is indicated in the figure. As
can be seen from the figure, the pair correlation func-
tions provide considerable insight into the pair dynam-
ics. As shown in Fig. 7b the largest peak corresponds to
the contact pair 9–12, while the pair 1–16 shows the

Fig. 6. Energy landscape (the funnel) for the model HP-36 protein
obtained from BD simulations. The configurations corresponding
to various energy states (unfolded, transition and native state) are
also shown. The x-axis denotes the number of configurations with
energy E (adopted from Ref. [71])

Fig. 7a, b. Pair distribution functions between the various hydro-
phobic residues. a Full GijðrÞ, b the closeup of the first peak in
GijðrÞ
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smallest peak. From the HP-36 protein sequence
(Fig. 3a) it can be seen that among the hydrophobic
residues studied, 9 and 12 are separated by just three
monomers, while the hydrophobic residues 1 and 16 are
separated by 34 monomers. In other words, the pair
9–12 involves local interaction, while the interaction
between 1–16 is nonlocal. The rest of the peaks shown in
the figure (9–15, 12–15, 5–9, 5–12 and 5–15) have the
peak heights proportional to the respective sequence
separation in the HP-36 sequence.

9.3.2 Dynamics of contact-pair formation

The unfolded protein obviously folds by forming pair
contacts between the specific beads. The dynamics of
tact pair formation provide a better window to study the
protein folding; however, the dynamics are much more
involved. For the present purpose, it is sufficient to
monitor the distance between the specific pairs as a
function of time. The study of the pair correlations
reveals information on the contact formation between
the specific hydrophobic residues. The dynamics of each
of these pairs are studied in detail. The contact-pair time
correlation function is defined as [77]

Ci;jðtÞ ¼
hRi;jðtÞi � hRi;jð1Þi
hRi;jð0Þi � hRi;jð1Þi : ð14Þ

The dynamics are followed by studying the folding from
time t ¼ 0 to t ¼ 1, the time required for all the
temperature quenches. The pair correlation, Ci;jðtÞ, is
shown in Fig. 8 as a function of the reduced time for all
the previous mentioned contacts. The average trend of
the approach to the native state is shown by symbols,
while that for the individual pair is shown by full lines.
The representation of the curves is shown in the figure.
From this figure it is clear that the pair 9–12 is the fastest
to attain its final position in the native conformation,
while the pair 1–16 is the slowest. The rest of the pairs

(9–15, 12–15, 5–9, 5–12 and 5–15) show a similar trend
to that shown in Fig. 7. Close observation of pair 9–12
in the HP-36 sequence (Fig. 3) shows that these two
hydrophobic beads are surrounded by hydrophobic
beads on either side. Moreover, the hydrophobic blocks
containing 9 and 12 are separated by just one hydro-
philic bead. The fast contact formation of the 9–12 pair
reveals the importance of the sequential arrangement of
the amino acid residues in the protein in determining the
folding rate. This is clearer from Fig. 9, where the
folding rate (inverse of the folding time) is plotted as a
function of the sequence separation (in terms of
monomers). The folding time of a pair of hydrophobic
residues shows a strong dependence on the sequence
separation. Note that at short separations the folding

Fig. 8. Pair correlation function Ci;jðtÞ defined by
Eq. (14) for various pairs of hydrophobic residues
as a function of reduced time. The pair with the
smallest sequence separation (9–12) in the HP-36
folds faster (brown), while the pair with the longest
separation (1–16) is the slowest (red) to reach the
native contact. The circles represent the result
obtained by averaging over all seven contact pairs

Fig. 9. Rate of native contact formation between the hydrophobic
residues as a function of monomer separation. The hydrophobic
beads corresponding to a given monomer separation are indicated
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rate shows an exponential decay with increasing mono-
mer separation. This reveals that the initial part of the
folding is dominated by the local interactions, while the
nonlocal interactions come into play in the later stages.
This reveals that the protein folding involves two stages.
First, the formation of the pair contacts between the
residues owing to the local interactions. Second, the pair
contacts mediated by the nonlocal interactions. Howev-
er, folding continues for a relatively long time even after
the formation of the (local) pair contacts. Thus it is clear
that the protein folding involves the formation of the
local contacts, which is a fast and perhaps the first step,
and the formation of the nonlocal contacts, which is a
relatively slow step. The rate-determining step in the
protein folding is the formation of the nonlocal contacts.
This is in accordance with the study of the Grantcharova
et al. [33].

The average Ci;jðtÞ is shown in Fig. 10 as a function
of the reduced time in two very different situations. The
full line shows the result obtained by averaging over
five nativelike configurations selected in the vicinity of
the native state. In the same figure, the result obtained
by averaging over five configurations that are far from
the native state is shown by the dashed line. While the
average Ci;jðtÞ is found to show an exponential-like
decay (not shown), Ci;jðtÞ in these two cases exhibits
very different behavior. This comparison reveals that
the formation of nativelike configurations results from
the fast formation of the initial contacts (as already
described, these are the local contacts) followed by the
slow (nonlocal) contacts, which results in a long-time
tail in Ci;jðtÞ. On the other hand, the folding of the
protein into the energetically unfavoured configurations
(far from the native state) results from the formation of
the arbitrary pair contacts, resulting in a monotonic
decay of Ci;jðtÞ, which resembles the collapse of a
simple homopolymer [72]. Thus, the formation of the
‘‘correct’’ pair contacts plays a vital role in the protein

folding, which is in accordance with the study of
Zwanzig [25].

9.3.3 Dynamics near the native state

The equilibrium and the dynamic approach to the native
conformation are described here. Ci;jðtÞ for the six
different contacts are plotted in Fig. 11 as a function of
the reduced time. The representation of this figure is
same as that in Fig. 10. This figure reveals that most of
the pairs (except for pair 5–15, which is 25 residues
apart), show a faster approach towards the native state.

Fig. 10. Pair correlation function calculated by averaging over five
configuration near the native state ( full line) and that for five
configurations far from the native state (dashed line). The native
configuration results from the initial fast contact formation
followed by slower rearrangement. On the other hand, the
energetically unfavorable configurations originate owing to the
slow monotonic contacts, as in case of the collapse of simple
homopolymers

Fig. 11. Pair correlation functions for the
individual contacts for the native configura-
tion. As shown, most of the contacts form very
fast and the native state is attained by the
readjustment of these initial contacts
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9.4 Dynamics of folding and unfolding

The native configuration (corresponding to the mini-
mum in the energy funnel) is chosen for the unfolding
study. In the study of unfolding, the interaction energies
among the various amino acids are changed instanta-
neously at time t ¼ 0. Snapshots of the unfolding of HP-
36 protein found in BD simulations are shown in
Fig. 12. As shown in this figure, the completely folded
initial configuration gradually unfolds by breaking the
native contacts to reach the fully extended state. To
emphasize this point, the number of topological contacts
is plotted in Fig. 13 as a function of time. For
comparison, the variation in Ntopo during the folding is
also shown in the inset. As shown in main figure, Ntopo is
a maximum at t ¼ 0, which corresponds to the native
state. In the unfolding case, the variation in number of
topological contacts (main figure) shows the opposite
trend to that of the folding (inset). On the whole, Ntopo

decreases during the unfolding, while it increases in the
case of folding. This figure demonstrates the role of
topological contacts and the importance of the hydro-
phobic forces in protein folding/unfolding.

The increase in energy during unfolding is shown in
Fig. 14. In the inset the same is shown for the mean
square radius of gyration. It is interesting to note the
oscillatory dynamics, also recorded for topological
contact formation in Fig. 13. Such oscillations seem to
indicate that the polymer, when unfolding, faces a bar-
rier. It is observed that the oscillations in the energy and
in the mean square radius are larger for folding. Of
course these oscillations may be very much dependent on
the effective potentials used in the simulation model, but
they indicate the presence of barriers along folding and
unfolding, except that there seem to be more barriers

during folding and also the pathway seems to be more
complicated. In particular, the dynamics during folding
show considerably more oscillations in the final stage of
folding which is relatively smooth for unfolding.

9.5 Protein folding funnel versus that
of RNA/DNA folding

The folding of DNA/RNA can be considerably different
from that of the proteins. Folding of DNA hairpins has
recently been studied in some detail as the hairpins are the
commonly encountered structural intermediates inDNA/
RNA folding [78–82]. For the DNA hairpins, the free-
energy landscape is rough at the outermost edges. This is a
consequence of the fact that in this case, prior to
the hairpin formation, there is a large probability for the
misfolding. Once a correct ‘‘native contact’’ is formed, the
rest of the chain folds by instantaneous ‘‘zipping’’. This
leads to a smooth and downhill pathway in the later
stages. On the other hand, for the proteins, in the initial
stages the formation of ‘‘nativelike’’ contacts is energet-
ically favored. In the later stages, the roughness of the
energy surface increases owing to competition between

Fig. 12. Snapshots of the unfolding of model HP-36 protein as
observed in BD simulations

Fig. 13. Variation in the number of hydrophobic topological
contacts as a function of time showing the result for unfolding.
The inset represents that for the folding. During the unfolding,
Ntopo shows the opposite trend to that observed in the case of
folding
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the energy and structural entropy. Moreover, in this case,
the formation of a few ‘‘native contacts’’ does not always
result in the formation of a native conformation. The cost
of making a wrong contact increases as the folding
proceeds. This leads to an energy-landscape picture with
increasing roughness as the protein approaches the native
state. The folding scenario of proteins and DNA and
RNA thus appears to be rather different.

10 Conclusion

The study of the pair correlations during the folding
revealed that the folding of a protein involves two stages:
fast local contact formation which is followed by the
slower nonlocal contacts. The protein folding rate is
mainly controlled by the latter contacts. This is further
confirmed by comparing the Ci;jðtÞ for the states near
and far from the native states.

Given the complexity of the real protein folding
problem, the ability of such a minimalist model (as used
here and also elsewhere) to capture many of the essential
features of protein folding is quite encouraging. The
present study suggests that it may be possible to obtain
semiquantitative information on the folding mechanism,
folding rates and also the stability by modeling more
complex proteins in a similar way.

Studies exploring the sensitivity to the potential em-
ployed and also on generalizing the set of potentials to

accommodate more realistic potentials will reveal more
information. Also, the study of the formation of the
specific contacts that characterize the native state may
provide deeper insight. The present studies seem to
suggest that a simple minimalistic model as adopted here
should be generalized at least to include the difference in
size of the amino acid residues.

There are still many unsolved or poorly understood
theoretical problems. For example, the relationship
between helix formation and the rigidity of the
heteropolymer chain has not been fully explored. A
homopolymer chain with a simple Lennard–Jones type
interaction always seems to have a toroidal and not a
helical shape as the most stable state. Clearly, specific
interactions among the amino acid residues play an
important role in stabilizing the helix. In addition, the
rigidity of the backbone also needs to be considered.
Most of the theoretical studies have not included even
such simple factors as the variation of the size of the
amino acids and the hydrophobicity along the chain in
any realistic fashion. Even from a polymer theory per-
spective, these are interesting problems worth further
investigation. In addition, it is now known that in those
proteins which are involved in enzymatic activity, certain
hydrophobic patches remain exposed to water, such as
the tryptophan, methionine and phenylalanine in sub-
tilisin carlsberg (PDB code 1SBC). How such arrange-
ments are stabilized, despite apparently strong bias
against the hydrophobic groups on the surface, remains
to be understood.

On the experimental side, a lot more needs to be
learned from dynamic studies. For example, it would
be nice to have flourescence resonance energy transfer
experiments done during folding, by using, for example,
single-molecule spectroscopic techniques. Even studies
of denatured proteins can reveal information about the
dynamics of conformational transition between different
states of proteins.
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